Math 3450 - Homework # 3 Well-Defined Operations

1. Show that the operation $\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2$ is a well-defined operation for \mathbb{Z}_n . Here \overline{a}^2 means $\overline{a} \cdot \overline{a}$. For example, in \mathbb{Z}_4 we have that

$$\overline{2} \oplus \overline{3} = \overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{1}.$$

Proof. 1) Let $\overline{a}, \overline{b} \in \mathbb{Z}_n$ where $a, b \in \mathbb{Z}$.

Then

$$\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2 = \overline{a^2} + \overline{b^2} = \overline{a^2 + b^2}.$$

Since $a, b \in \mathbb{Z}$ we have that $a^2 + b^2 \in \mathbb{Z}$.

Therefore, $\overline{a} \oplus \overline{b} = \overline{a^2 + b^2} \in \mathbb{Z}_n$.

So \mathbb{Z}_n is closed under the operation \oplus .

2) Suppose that $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ such that $\overline{a_1} = \overline{a_2}$ and $\overline{b_1} = \overline{b_2}$. We need to show that $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

From class we had a theorem that says that if $\overline{x} = \overline{y}$ and $\overline{w} = \overline{z}$, then $\overline{x} + \overline{w} = \overline{y} + \overline{z}$ and $\overline{x} \cdot \overline{w} = \overline{y} \cdot \overline{z}$.

Repeatedly using the above theorem we get the following.

We have that $\overline{a_1} \cdot \overline{a_1} = \overline{a_2} \cdot \overline{a_2}$ by multiplying the equations $\overline{a_1} = \overline{a_2}$ and $\overline{a_1} = \overline{a_2}$. Similarly, $\overline{b_1} \cdot \overline{b_1} = \overline{b_2} \cdot \overline{b_2}$ by multiplying the equations $\overline{b_1} = \overline{b_2}$ and $\overline{b_1} = \overline{b_2}$. Adding the two equations above we get that $\overline{a_1} \cdot \overline{a_1} + \overline{b_1} \cdot \overline{b_1} = \overline{a_2} \cdot \overline{a_2} + \overline{b_2} \cdot \overline{b_2}$.

Therefore, $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

Thus \oplus is a well-defined operation on \mathbb{Z}_n .

- 2. Given two integers a and b, let $\min(a, b)$ denote the minimum (smaller) of a and b. Let n be an integer with $n \ge 2$. Is the operation $\overline{a} \oplus \overline{b} = \min(a, b)$ a well-defined operation on \mathbb{Z}_n ?

Solution: This operation is not well-defined. For example, consider n = 4. In \mathbb{Z}_4 we have that $\overline{0} = \overline{8}$ and $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we would need $\overline{0} \oplus \overline{1} = \overline{8} \oplus \overline{5}$. However, $\overline{0} \oplus \overline{1} = \overline{\min(0, 1)} = \overline{0}$ and $\overline{8} \oplus \overline{5} = \overline{\min(8, 5)} = \overline{5}$. But $\overline{0} \neq \overline{5}$ in \mathbb{Z}_4 .

- - (b) Is the operation well-defined on $\mathbb{Q} \{0\}$?
- 4. Is the operation $\overline{a} \oplus \overline{b} = \overline{a^b}$ a well-defined operation on \mathbb{Z}_n ?

Solution: There are two issues with this operation.

One issue is as follows. As an example, consider n = 4. In \mathbb{Z}_4 we have that $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we must have that $\overline{2} \oplus \overline{1} = \overline{2} \oplus \overline{5}$. However, $\overline{2} \oplus \overline{1} = \overline{2^1} = \overline{2}$ and $\overline{2} \oplus \overline{5} = \overline{2^5} = \overline{32} = \overline{0}$. And $\overline{2} \neq \overline{0}$ in \mathbb{Z}_4 .

Another issue is when b is a negative integer. For example, in \mathbb{Z}_4 suppose we want to calculate $\overline{2} \oplus \overline{-1}$. What does this mean? The formula says that it is $\overline{2^{-1}}$. But what is that in \mathbb{Z}_4 ? In fact there is no way to make sense of 1/2 in \mathbb{Z}_4 because there is no multiplicative inverse for $\overline{2}$ in \mathbb{Z}_4 . (Why?) Because there is no $\overline{x} \in \mathbb{Z}_4$ with $\overline{x} \cdot \overline{2} = \overline{1}$. We can check:

$$\overline{0} \cdot \overline{2} = \overline{0} \neq \overline{1}$$
$$\overline{1} \cdot \overline{2} = \overline{2} \neq \overline{1}$$
$$\overline{2} \cdot \overline{2} = \overline{4} = \overline{0} \neq \overline{1}$$
$$\overline{3} \cdot \overline{2} = \overline{6} = \overline{2} \neq \overline{1}$$

Thus there is no way to define $\overline{2^{-1}}$ in \mathbb{Z}_4 .

- 5. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times (\mathbb{Z} \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if ad = bc. In the last homework you showed that this is an equivalence relation on S.
 - (a) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc,bd)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, \overline{b}) and $\overline{(c, d)}$ where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ad + bc \in \mathbb{Z}$ because $a, b, c, d \in \mathbb{Z}$ and the integers are closed under addition and multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$. Thus $(ad+bc, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(ad+bc, bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(x,y)}, \text{and } \overline{(w,z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$. Further suppose that $\overline{(a,b)} = \overline{(x,y)}$ and $\overline{(c,d)} = \overline{(w,z)}$. We need to show that $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(x,y)} \oplus \overline{(w,z)}$. That is, we need to show that $\overline{(ad + bc, bd)} = \overline{(xz + yw, yz)}$. The above is equivalent to showing that (ad+bc)yz = bd(xz+yw). Let's do this. Since $\overline{(a,b)} = \overline{(x,y)}$ we have that ay = bx. Since $\overline{(c,d)} = \overline{(w,z)}$ we have that cz = dw.

Therefore, using the equations ay = bx and cz = dw we get that

$$(ad + bc)yz = adyz + bcyz$$

= $(ay)(dz) + (cz)(by)$
= $(bx)(dz) + (dw)(by)$
= $bd(xz + yw).$

Thus, (ad + bc, bd) = (xz + yw, yz).

Thus, the operation \oplus is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

- (b) Define the operation $\overline{(a,b)} \odot \overline{(c,d)} = \overline{(ac,bd)}$. Prove that \odot is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ac \in \mathbb{Z}$ because $a, c \in \mathbb{Z}$ and the integers are closed under multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$.

Thus $(ac, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $\overline{(a, b)} \odot \overline{(c, d)} = \overline{(ac, bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(x,y)}, \text{and } \overline{(w,z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$. Further suppose that $\overline{(a,b)} = \overline{(x,y)}$ and $\overline{(c,d)} = \overline{(w,z)}$. We need to show that $\overline{(a,b)} \odot \overline{(c,d)} = \overline{(x,y)} \odot \overline{(w,z)}$. That is, we need to show that $\overline{(ac,bd)} = \overline{(xw,yz)}$. The above is equivalent to showing that (ac)(yz) = (bd)(xw). Let's do this. Since $\overline{(a,b)} = \overline{(x,y)}$ we have that ay = bx. Since $\overline{(c,d)} = \overline{(w,z)}$ we have that cz = dw.

Therefore, using the equations ay = bx and cz = dw we get that

$$(ac)(yz) = (ay)(cz) = (bx)(dw) = (bd)(xw)$$

Thus, $\overline{(ac, bd)} = \overline{(xw, yz)}$.

Therefore, the operation \odot is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

- 6. (Constructing the integers from the natural numbers) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a+d = b+c. In the last homework you showed that this is an equivalence relation on S.
 - (a) Define the operation $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a,b)}$ and $\overline{(c,d)}$ where $(a,b), (c,d) \in \mathbb{N} \times \mathbb{N}$.

Then a + c and b + d are both in \mathbb{N} because \mathbb{N} is closed under addition.

Thus, $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(a+c,b+d)}$ is a valid equivalence class in $\mathbb{N} \times \mathbb{N}/\sim$.

2) Now suppose that $\overline{(a,b)}, \overline{(c,d)}, \overline{(e,f)}, \text{and } \overline{(g,h)}$ are equivalence classes of $\mathbb{N} \times \mathbb{N}/\sim$.

Further suppose that $\overline{(a,b)} = \overline{(e,f)}$ and $\overline{(c,d)} = \overline{(g,h)}$. We need to show that $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(e,f)} \oplus \overline{(g,h)}$. We have that a + f = b + e since $\overline{(a,b)} = \overline{(e,f)}$. We also have that c + h = d + g since $\overline{(c,d)} = \overline{(g,h)}$. Adding these two equations gives a + f + c + h = b + e + d + g. Rearranging gives (a + c) + (f + h) = (b + d) + (e + g). Therefore, $\overline{(a + c, b + d)} = \overline{(e + g, f + h)}$. Hence $\overline{(a,b)} \oplus \overline{(c,d)} = \overline{(e,f)} \oplus \overline{(g,h)}$.

The above arguments show that \oplus is a well-defined operation on the equivalence classes of $\mathbb{N} \times \mathbb{N} / \sim$.