Math 3450 - Homework $# 3$ Well-Defined Operations

1. Show that the operation $\bar{a} \oplus \bar{b} = \bar{a}^2 + \bar{b}^2$ is a well-defined operation for \mathbb{Z}_n . Here \overline{a}^2 means $\overline{a} \cdot \overline{a}$. For example, in \mathbb{Z}_4 we have that

$$
\overline{2} \oplus \overline{3} = \overline{2} \cdot \overline{2} + \overline{3} \cdot \overline{3} = \overline{4} + \overline{9} = \overline{1}.
$$

Proof. 1) Let $\overline{a}, \overline{b} \in \mathbb{Z}_n$ where $a, b \in \mathbb{Z}$.

Then

$$
\overline{a} \oplus \overline{b} = \overline{a}^2 + \overline{b}^2 = \overline{a^2} + \overline{b^2} = \overline{a^2 + b^2}.
$$

Since $a, b \in \mathbb{Z}$ we have that $a^2 + b^2 \in \mathbb{Z}$.

Therefore, $\overline{a} \oplus \overline{b} = \overline{a^2 + b^2} \in \mathbb{Z}_n$.

So \mathbb{Z}_n is closed under the operation \oplus .

2) Suppose that $a_1, a_2, b_1, b_2 \in \mathbb{Z}$ such that $\overline{a_1} = \overline{a_2}$ and $\overline{b_1} = \overline{b_2}$. We need to show that $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

From class we had a theorem that says that if $\bar{x} = \bar{y}$ and $\bar{w} = \bar{z}$, then $\overline{x} + \overline{w} = \overline{y} + \overline{z}$ and $\overline{x} \cdot \overline{w} = \overline{y} \cdot \overline{z}$.

Repeatedly using the above theorem we get the following.

We have that $\overline{a_1} \cdot \overline{a_1} = \overline{a_2} \cdot \overline{a_2}$ by multiplying the equations $\overline{a_1} = \overline{a_2}$ and $\overline{a_1} = \overline{a_2}.$ Similarly, $\overline{b_1} \cdot \overline{b_1} = \overline{b_2} \cdot \overline{b_2}$ by multiplying the equations $\overline{b_1} = \overline{b_2}$ and $\overline{b_1} = \overline{b_2}.$ Adding the two equations above we get that $\overline{a_1} \cdot \overline{a_1} + \overline{b_1} \cdot \overline{b_1} = \overline{a_2} \cdot \overline{a_2} + \overline{b_2} \cdot \overline{b_2}$. Therefore, $\overline{a_1} \oplus \overline{b_1} = \overline{a_2} \oplus \overline{b_2}$.

Thus \oplus is a well-defined operation on \mathbb{Z}_n .

- \Box
- 2. Given two integers a and b, let $\min(a, b)$ denote the minimum (smaller) of a and b. Let n be an integer with $n \geq 2$. Is the operation $\overline{a} \oplus b =$ $\min(a, b)$ a well-defined operation on \mathbb{Z}_n ?

Solution: This operation is not well-defined. For example, consider $n = 4$. In \mathbb{Z}_4 we have that $\overline{0} = \overline{8}$ and $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we would need $\overline{0} \oplus \overline{1} = \overline{8} \oplus \overline{5}$. However, $\overline{0} \oplus \overline{1} =$ $\overline{\min(0, 1)} = \overline{0}$ and $\overline{8} \oplus \overline{5} = \overline{\min(8, 5)} = \overline{5}$. But $\overline{0} \neq \overline{5}$ in \mathbb{Z}_4 .

- 3. (a) Show that the operation $\frac{a}{b}$ b $\oplus \frac{c}{\overline{c}}$ d = ad $\frac{du}{bc}$ is not a well-defined operation on Q. **Solution:** We have that $\frac{5}{2}, \frac{0}{1}$ $\frac{0}{1} \in \mathbb{Q}$ however $\frac{5}{2} \oplus \frac{0}{1} = \frac{5 \cdot 1}{2 \cdot 0} = \frac{5}{0}$ $\frac{5}{0} \notin \mathbb{Q}$. Hence $\mathbb Q$ is not closed under \oplus and the operation is not welldefined.
	- (b) Is the operation well-defined on $\mathbb{Q} \{0\}$?
- 4. Is the operation $\bar{a} \oplus \bar{b} = \bar{a}^{\bar{b}}$ a well-defined operation on \mathbb{Z}_n ?

Solution: There are two issues with this operation.

One issue is as follows. As an example, consider $n = 4$. In \mathbb{Z}_4 we have that $\overline{1} = \overline{5}$. Thus, for the operation to be well-defined we must have that $\overline{2} \oplus \overline{1} = \overline{2} \oplus \overline{5}$. However, $\overline{2} \oplus \overline{1} = 2^1 = \overline{2}$ and $\overline{2} \oplus \overline{5} = 2^5 = \overline{32} = \overline{0}$. And $\overline{2} \neq \overline{0}$ in \mathbb{Z}_4 .

Another issue is when b is a negative integer. For example, in \mathbb{Z}_4 suppose we want to calculate $\overline{2} \oplus \overline{-1}$. What does this mean? The formula says that it is $\overline{2^{-1}}$. But what is that in \mathbb{Z}_4 ? In fact there is no way to make sense of $1/2$ in \mathbb{Z}_4 because there is no multiplicative inverse for $\overline{2}$ in \mathbb{Z}_4 . (Why?) Because there is no $\overline{x} \in \mathbb{Z}_4$ with $\overline{x} \cdot \overline{2} = \overline{1}$. We can check:

$$
\overline{0} \cdot \overline{2} = \overline{0} \neq \overline{1}
$$

$$
\overline{1} \cdot \overline{2} = \overline{2} \neq \overline{1}
$$

$$
\overline{2} \cdot \overline{2} = \overline{4} = \overline{0} \neq \overline{1}
$$

$$
\overline{3} \cdot \overline{2} = \overline{6} = \overline{2} \neq \overline{1}
$$

Thus there is no way to define $\overline{2^{-1}}$ in \mathbb{Z}_4 .

- 5. (Constructing the rational numbers from the integers) Let $S = \mathbb{Z} \times$ $(\mathbb{Z} - \{0\})$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if $ad = bc$. In the last homework you showed that this is an equivalence relation on S.
	- (a) Define the operation $(a, b) \oplus (c, d) = (ad + bc, bd)$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes (a, b) and (c, d) where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ad + bc \in \mathbb{Z}$ because $a, b, c, d \in \mathbb{Z}$ and the integers are closed under addition and multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$. Thus $(ad+bc, bd) \in \mathbb{Z} \times (\mathbb{Z}-\{0\})$ and $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(ad+bc, bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(x, y)},$ and $\overline{(w, z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim.$ Further suppose that $\overline{(a, b)} = \overline{(x, y)}$ and $\overline{(c, d)} = \overline{(w, z)}$. We need to show that $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(x, y)} \oplus \overline{(w, z)}$. That is, we need to show that $\overline{(ad + bc, bd)} = \overline{(xz + yw, yz)}$. The above is equivalent to showing that $(ad+bc)yz = bd(xz+yw)$. Let's do this. Since $\overline{(a, b)} = \overline{(x, y)}$ we have that $ay = bx$. Since $\overline{(c,d)} = \overline{(w,z)}$ we have that $cz = dw$.

Therefore, using the equations $ay = bx$ and $cz = dw$ we get that

$$
(ad+bc)yz = adyz + bcyz
$$

= $(ay)(dz) + (cz)(by)$
= $(bx)(dz) + (dw)(by)$
= $bd(xz + yw).$

Thus, $\overline{(ad + bc, bd)} = \overline{(xz + yw, yz)}$.

Thus, the operation \oplus is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim.$

- \Box
- (b) Define the operation $\overline{(a, b)} \odot \overline{(c, d)} = \overline{(ac, bd)}$. Prove that \odot is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a, b)}$ and $\overline{(c, d)}$ where $(a, b), (c, d) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}).$

Then $ac \in \mathbb{Z}$ because $a, c \in \mathbb{Z}$ and the integers are closed under multiplication.

Also, since $b, d \in \mathbb{Z} - \{0\}$ we have that $bd \neq 0$ and so $bd \in \mathbb{Z} - \{0\}$.

Thus $(ac, bd) \in \mathbb{Z} \times (\mathbb{Z} - \{0\})$ and $\overline{(a, b)} \odot \overline{(c, d)} = \overline{(ac, bd)}$ is a valid equivalence class.

2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(x, y)},$ and $\overline{(w, z)}$ are equivalence classes in $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim.$ Further suppose that $\overline{(a, b)} = \overline{(x, y)}$ and $\overline{(c, d)} = \overline{(w, z)}$. We need to show that $\overline{(a, b)} \odot \overline{(c, d)} = \overline{(x, y)} \odot \overline{(w, z)}$. That is, we need to show that $\overline{(ac, bd)} = \overline{(xw, yz)}$. The above is equivalent to showing that $(ac)(yz) = (bd)(xw)$. Let's do this. Since $(a, b) = (x, y)$ we have that $ay = bx$. Since $(c, d) = (w, z)$ we have that $cz = dw$. Therefore, using the equations $ay = bx$ and $cz = dw$ we get that

$$
(ac)(yz) = (ay)(cz) = (bx)(dw) = (bd)(xw).
$$

Thus, $\overline{(ac, bd)} = \overline{(xw, yz)}$.

Therefore, the operation ⊙ is well-defined on the equivalence classes of $\mathbb{Z} \times (\mathbb{Z} - \{0\}) / \sim$.

 \Box

- 6. (Constructing the integers from the natural numbers) Let $S = N \times N$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if $a+d = b+c$. In the last homework you showed that this is an equivalence relation on S.
	- (a) Define the operation $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(a+c, b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

Proof. 1) Consider two equivalence classes $\overline{(a, b)}$ and $\overline{(c, d)}$ where $(a, b), (c, d) \in \mathbb{N} \times \mathbb{N}.$

Then $a + c$ and $b + d$ are both in N because N is closed under addition.

Thus, $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(a+c, b+d)}$ is a valid equivalence class in $\mathbb{N} \times \mathbb{N}/\sim$.

2) Now suppose that $\overline{(a, b)}, \overline{(c, d)}, \overline{(e, f)},$ and $\overline{(g, h)}$ are equivalence classes of $\mathbb{N} \times \mathbb{N}/\sim$.

Further suppose that $\overline{(a, b)} = \overline{(e, f)}$ and $\overline{(c, d)} = \overline{(g, h)}$. We need to show that $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(e, f)} \oplus \overline{(g, h)}$. We have that $a + f = b + e$ since $\overline{(a, b)} = \overline{(e, f)}$. We also have that $c + h = d + g$ since $\overline{(c, d)} = \overline{(g, h)}$. Adding these two equations gives $a + f + c + h = b + e + d + g$. Rearranging gives $(a + c) + (f + h) = (b + d) + (e + g)$. Therefore, $(a + c, b + d) = (e + g, f + h)$. Hence $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(e, f)} \oplus \overline{(g, h)}$.

The above arguments show that \oplus is a well-defined operation on the equivalence classes of $\mathbb{N} \times \mathbb{N}/\sim$.

 \Box